

Characterization of Hypersonic Instabilities over a Double Cone

Ozgur Tumuklu and Kyle M. Hanquist

Rensselaer Polytechnic Institute

The University of Arizona

AIAA Paper 2024-1481

Background

This works briefly aims to:

- investigate the **instabilities** resulted from complex shock wave boundary layer interactions (SWBLIs) over double wedges and doubles cones.
- compare findings with measured data and high-fidelity previous DSMC simulations.
- estimate temporal characteristics of flows to provide data to experimentalists using 2-D and full 3-D configurations.
- characterize the 3D instabilities with different Reynolds numbers.
- An open-source frameworks*,** were used to model SWBLIs.

*Casseau,V.,Palharini,R.C.,Scanlon,T.J.,andBrown,R.E., "Atwo-temperatureopen-source CFD model for hypersonic reacting flows, part one: zero-dimensional analysis," *Aerospace*, Vol. 3, No. 4, 2016, p. 34.

** Maier, et al., "Development of Physical and Numerical Nonequilibrium Modeling Capabilities within the SU2-NEMO Code," AIAA Paper 2023-3488.

SU2-NonEquilibriumMOdels (NEMO)*

- Extension of SU2 for nonequilibrium, high-temperature, and high-speed flows,
- Continuum/slip regime, steady, viscous, multi-component, gas mixtures in thermochemical nonequilibrium,
- Finite-rate chemistry and thermal nonequilibrium,
- Catalytic wall, slip BC, and radiative equilibrium BC,
- Inherits, a lot of strengths from SU2 (design, multi-physics),
- Convective fluxes with MUSCL and limiting on primitives (MSW, AUSM, AUSM+up2).

*Maier, et al., "Development of Physical and Numerical Nonequilibrium Modeling Capabilities within the SU2-NEMO Code," AIAA Paper 2023-3488.

Grid Convergence

- Structured meshes with two different number of grids are used.
- Rigorous grid study is carried out to ensure that the results are independent of grid resolutions
- 71,000 surface elements along with about **28M grids** were used for the double cone cases whereas 50M grids were used for 3D double wedge calculations.

Temporal Characteristics of Shock Structure 2D Double Wedge*

- The lowest pressure case reaches steady state at about 0.75 ms
- Periodic oscillations seen in the medium pressure (P=196 Pa) case.
- The oscillations disappear for the highest-pressure case but flow reaches steady state about 2 ms (**10X times** larger than the duration of the experiment).

*Tumuklu, O., & Hanquist, K. M. (2023). Unsteadiness of hypersonic flows over a double wedge. In *AIAA SCITECH 2023 Forum* (p. 0860).

Accuracy Current Continuum Simulations over

Double Wedge

- The temporal evolutions are found to be the same for DSMC and NS.
- The impact of rarefied effects, even for the lowest Re, is negligible.

*Tumuklu, O., Levin, D. A., and Theofilis, V., "On the temporal evolution in laminar separated boundary layer shock-interaction flows using DSMC," AIAA Paper 2017-1614, 2017.

**Tumuklu, O., and Hanquist, K. M., "Temporal characteristics of hypersonic flows over a double wedge with Reynolds number," Physics of Fluids, Vol. 35, No. 10, 2023.

Periodic 3-D Simulations over Double Wedge

Full 3D Simulations over Double Wedge*

P = 781 Pa

• The structure of the spanwise instabilities close to the center is found to be very similar to 3D periodic cases.

*Tumuklu, O., and Hanquist, K. M., "Temporal characteristics of hypersonic flows over a double wedge with Reynolds number," Physics of Fluids, Vol. 35, No. 10, 2023.

Effect of Geometric Configurations*

Shock Structures

Surface Heating

• Good agreement is achieved between the full 3D calculations and experiments.

*Tumuklu, O., and Hanquist, K. M., "Temporal characteristics of hypersonic flows over a double wedge with Reynolds number," Physics of Fluids, Vol. 35, No. 10, 2023.

Reinert, J. D., Candler, G. V., and Komives, J. R., "Simulations of unsteady three-dimensional hypersonic double-wedge flow experiments," AIAA Journal, Vol. 58, No. 9, 2020, pp. 4055–4067.

Comparison of Shock Structure with DSMC over Double Cone

- Excellent agreement is achieved with the previous DSMC work*.
- The reflection of the compression and expansion waves through the shear layer is captured accurately.

* Tumuklu, O., Levin, D. A., and Theofilis, V., "Investigation of unsteady, hypersonic, laminar separated flows over a double cone geometry using a kinetic approach," Physics of Fluids, Vol. 30, No. 4, 2018, p. 046103.

3-D Effects on the Flowfield for $P_{\infty} = 2.2 \text{ Pa}$

• Excellent agreement is achieved with 2-D and full 3-D calculations, indicating that the absence of spanwise instabilities.

3-D Effects on the Flow for $P_{\infty} = 8.8 \text{ Pa}$

• The onset of 3-D instabilities is reported for the high Re case.

Temporal Comparison of the Surface and Flow Fields for Double Cone

- **Temporal characteristics** of both kinetic and continuum solvers are compared, and very good agreement is achieved.
- Slight differences are seen in the temporal evolutions, but the decay rates are consistent with the previous DSMC data.

^{*} Tumuklu, O., Levin, D. A., and Theofilis, V., "Investigation of unsteady, hypersonic, laminar separated flows over a double cone geometry using a kinetic approach," Physics of Fluids, Vol. 30, No. 4, 2018, p. 046103.

Characterization of KH instability on the Flow Field

* Tumuklu, O., Levin, D. A., and Theofilis, V., "Investigation of unsteady, hypersonic, laminar separated flows over a double cone geometry using a kinetic approach," Physics of Fluids, Vol. 30, No. 4, 2018, p. 046103.

Conclusions

- Rigorous comparisons were made previous DSMC work, excellent agreement was achieved.
- Ongoing efforts focus on the **characteristics of 3-D instabilities** at different Re and wedge/cone angles.
- The implementation of **WMLES** using GPUs is under consideration to study a wide spectrum of **Re**.
- The effect of the real gas effects using **Mutation++** is under consideration.
- The impact of the surface temperature on the structure of the spanwise instabilities will be investigated.

Comparison of Pressure Field with DSMC

Excellent agreement is achieved with the previous DSMC work.

*Tumuklu, O., Levin, D.A., and Theofilis V., Onthetemporalevolutioninlaminarseparatedboundarylayershock-interactionflowsusing DSMC, 55th AIAA Aerospace Sciences Meeting, 2017, p. 1614