

AIAA Paper 2025-2270

Assessment of Externally Applied Magnetohydrodynamic Effects on the Boundary Layer in Shock-Dominated Hypersonic Flows

Joseph D. Franciamore and Ozgur Tumuklu

Rensselaer Polytechnic Institute

Hypersonic Aerothermal Vehicle Analysis (HAVA) Laboratory

www.havalab.org

Motivation

- Drag reduction and thermal management represent significant challenges in the design of modern strategic hypersonic systems.
- Magnetohydrodynamic (MHD) interactions represent a promising means of meeting these challenges.
- Aerospace systems experiencing highenthalpy flow may adopt MHD technology to enhance attitude control and vehicular guidance.

Image from militaryaerospace.com

This work aims to:

- investigate the effects of MHD interactions in the post shock region, notably in the thick boundary layer.
- characterize the benefits of magnetic external flow control techniques relative to surface shear stress and heat flux values.
- determine the feasibility of MHD control techniques as a substitute for traditional methods.

3-D Effects over the 5°-30° Configuration

MHD Formulation

- In addition to the traditional viscid and inviscid fluxes that are present in the Navier-Stokes equation, an **additional source term** is appended to model MHD effects.
- In each momentum directions, the Lorentz force is present to account for the continuum behavior of current densities subject to magnetic fields generated by the vehicle.
- Misalignment between magnetic forces and the velocity vector, in part due to the separation of charge, constitutes an energy source.
- Joule heating is also added due to the relatively low rates of natural ionization, thereby contributing to electrical resistance.

*Kurganov, A., and Tadmor, E., "New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations," Journal of computational physics, Vol. 160, No. 1, 2000, pp. 241–282 OpenCFD Ltd., **OpenFOAM**: The Open Source CFD Toolbox, 2023. URL https://www.openfoam.com, retrieved from <u>https://www.openfoam.com</u>. Vincent Casseau, An Open-Source CFD Solver for Planetary Entry, Ph.D. Thesis, 2017.

Numerical Schemes and Flow Conditions

Term	Schemes	Flow Conditions for HEG-I	
Time stepping	First order Euler	Quantity	Ι
Fluxes	Kurganov	H (MI/kg)	22.4
Gradient	Gauss linear	p_o (MPa)	35.0
Divergence	Gauss limited linear	T_o (K) U_{∞} (m/s)	9200 5956
Laplacian	Gauss linear corrected	p_{∞} (Pa) ρ_{∞} (kg/m ³) T_{∞} (K)	476 1.547 ×
Interpolation	vanLeer	$p_{p_{\infty}}$ (kPa)	52.9
Surface normal gradient schemes	Grad(U) corrected	$\begin{bmatrix} M_{\infty} \\ Y[N_2]_{\infty} \\ Y[O_2]_{\infty} \end{bmatrix}$	8.98 0.7543 0.00713
		$Y[NO]_{\infty}$ $Y[N]_{\infty}$ $Y[O]_{\infty}$	6.5 × 10 0.2283

Geuzaine, C., and Remacle, J.-F., "**Gmsh**: A 3-D finite element mesh generator with built-in pre- and post-processing facilities,", 2023. URL http://gmsh.info, version 4.9.4

**Knight, Doyle, et al. "Assessment of CFD capability for prediction of hypersonic shock interactions." Progress in Aerospace Sciences 48 (2012): 8-26.

Species Mass Fractions

Chemistry Validation and Grid Convergence

*Karl, S., Martinez Schramm, J., and Hannemann, K., "High enthalpy cylinder flow in HEG: A basis for CFD validation," *33rd AIAA Fluid Dynamics Conference and Exhibit*, 2003, p. 4252.

Configuration and Freestream Conditions*

Flux Scheme

Time Integration

Gradient Schemes

Divergence Schemes

Interpolation Schemes

Laplacian Schemes

Parameter	Value
p_{∞}	5.221 Pa
M_{∞}	25.0
T_{∞}	219.585 K
$T_{\rm wall}$	300 K
$ ho_\infty$	$8.283 \times 10^{-5} \text{ kg/m}^3$
$\chi_{N_2,\infty}$	0.8
$\chi_{O_2,\infty}$	0.2

Configuration

*Hypersonic and High-Temperature Gas Dynamics (AIAA Education)

Kurganov

First order Euler

Gauss limited Linear

Gauss linear corrected

Gauss linear

Linear Upwind

Geuzaine, C., and Remacle, J.-F., "**Gmsh**: A 3-D finite element mesh generator with built-in pre- and post-processing facilities 2023. URL http://gmsh.info, version 4.9.4

Table 1Freestream Properties and Conditions

Electrical Conductivity Model

- The Hall effect can be neglected for an electrically insulating wall, the Bush temperature-dependent power law was selected to calculate electrical conductivity.
- Data was curve-fit and optimized for the expected temperatures of the simulation.

700

600

Shear Stress (Pa)

300

200

Chapman-Cowling

$$\sigma_0 = 0.0008 \ S/m$$

 $T_0 = 1.0 K$

n = 1.6218

Shear Stress

Magnetic Field

- An axisymmetric configuration is employed due to the nature of the problem.
- A **1T** magnetic field is introduced at the location **where the shear stress reaches** its maximum. The black lines on the left indicate the direction of the magnetic field.
- The spatial distribution of the *x* and *y*-components of the magnetic fields is depicted.

Effect of MHD on Shock Structure

- The subsonic region near the wall enlarges.
- The pressure near the leading edge also increases.
- Both the translational and vibrational temperatures increase significantly.
- The shock standoff distance increases significantly under the influence of MHD.

Effects of MHD on Species Concentration

- NO molecules are **repelled** from the geometry.
- The pressure field increases significantly, especially near the leading edge.
- The concentration of NO+ increases by approximately two orders of magnitude.

Effects of MHD on Surface Parameters

- The maximum **surface heating** value decreases by a factor of 2 with the presence of magnetic field. Similarly, the maximum shear stress reduces about 3 times.
- Both the wall heating and shear stress show a kink at the location where the magnitude of magnetic field is maximum.
- Due to the strong nonequilibrium effects the temperature jump in the translational mode decreases whereas the increases the vibrational mode.

Conclusions

- The presence of a magnetic field in the post-shock region significantly alters the flow field at high Mach numbers.
- The external magnetic field tends to reduce both thermal and shear stresses, thereby decreasing the overall thermal and mechanical loads on the vehicle.
- The mutual interactions among viscous stress, temperature fields, and electromagnetism are evident through reductions in thermal flux and shear stress in the weakly ionized post-shock plasma.
- Asymmetric changes in these loadings may serve as an effective attitude control mechanism, eliminating the need for internal hydraulics or other moving components.

Acknowledgements

- The author is thankful for the provision of computational resources from the Center for Computational Innovations (CCI) at Rensselaer Polytechnic Institute (RPI).
- The computational resources are granted by NSF-ACCESS for the projects of PHY240018 PHY240112 through Purdue's Anvil cluster.
- Financial support for this research was provided by RPI.

Thank you.

